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1. Introduction

Today, G will denote a complex Lie group and g the complexification of its Lie algebra. Moreover, to
keep matters simple, and in particular amenable to finite computations, we may as well restrict G to be
the prototypical class of simple complex Lie groups. Then the relatively simple linear algebraic object g
determines G up to isogeny (a choice of covering groups). In fact, an even simpler datum determines g up
to isomorphism; that is its corresponding root system ∆; which in turn can be reduced to a even simpler
combinatorial datum; a set Π of mutually obtuse linearly independent vectors in a real Euclidean space
such that

〈α∨, β〉 ≡ 2 〈α, β〉
〈α, α〉

∈
{
{2} if a = β
{0,−1,−2,−3} if α 6= β

, α, β ∈ Π

Such simple systems are then reduced to simple weighted planar diagrams constructed by the following
algorithm:

• each vertex corresponds to a particular simple root α ∈ Π
• if 〈α∨, β〉 6= 0, then an edge is drawn between α and β. This edges are drawn between vertices

whenever 〈α, β〉 6= 0 according to the following rules
– There is an undirected edge of weight 1 connecting α and β whenever 〈αv, β〉 = 〈βv, α〉 = −1
– There is a direced edge of weight 2 from α to β whenever 〈αv, β〉 = −1 and

〈
β∨, α

〉
= −2

– There is a directed edge of weight 3 from α to β whenever 〈α∨, β〉 = −1 and
〈
β∨, α

〉
= −3

(The edge possibilities listed above are actually the only possibilities that occur when 〈a, β〉 6= 0)

If we demand further that for each α ∈ Π, there is also a β ∈ Π such that 〈α∨, β〉 ∈ {−1,−2,−3} (so
that we consider only connected Dynkin diagrams), then one has only a set of five exceptional possibilities
(G2, F4, E6, E7 and E8) and four infinite families (An, Bn, Cn, Dn) of simple systems.

Let me stress again the point of this. If (isomorphism classes of) simple complex Lie groups are determined
by their simple systems, then so is their representation theory and, in fact, all constructs of their group and
representation theory should be pre-determined by their simple systems. In this talk, I am going to show
how about two seemingly disparent constructs, nilpotent orbits and Weyl group representations, are pinned
together by this simple combinatorial/automata point of view. The experts are invited to contrast the
point of view presented here with the seemingly deeper (and at any rate, more sophisticated) connections
furnished by the Springer correspondence. I should also point out things that the domain of this point of
view can be extended to that of reductive algebraic groups and the real reductive Lie groups forms (although
in this extension the basic combintatorial datum determining the group must be enhanced to that of a root
datum, but even so, the possibilities here are dictated firstly by the choice of a simple system.)

1.1. Weyl groups. Let Π = {α1, . . . , αr} be a simple system inside a vector space V . Set

cij =
2 〈αi, αj〉
〈αi, αj〉

∈ {0, 2,−1,−2,−3}

and define the linear transformations

si : V → V : v 7−→ v − 2 〈v, αi〉
〈αi, αi〉

αi , i = 1, . . . , r .

Such transformations are reflections in V ; and as such generate a reflection subgoup WΠ of O (V ). The
group WΠ is, in fact, a finite group; it is the Weyl group of Π.
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Let GΠ be the simply connected complex Lie group corresponding to the simple system Π (which, in fact, can
be constructed directly from Π). The maximal torii of GΠ are fundamental objects in the representation
theory of GΠ (e.g., the maximal torii are in fact critical to parameterizations both finite and infinite
dimensional representations of GΠ). Let T be a maximal torus in GΠ and let N be the normalizer of T in
G. Then

Wanalytic ≡ N/T ≈ WΠ

Note that the Weyl group is, on the one hand, in very close proximity to the combinatorial data that
determines a simply connected, simple, complex Lie group and, on the other hand, also arises way-down-
the-road as a finite group associated with the representation theory of the group.

1.2. Nilpotent Orbits. The notion of a nilpotent orbit is crucial idea in modern representation theory.
These objects arise as follows (or at least, the following seems to be a minimal method for constructing
them). A simple system Π determines a simple Lie algebra g = gΠ, which in turn exponentiates to the
group G which in turn acts on g via its adjoint representation. If x ∈ g is such that adx acts nilpotently on
g, then the same is true for every Ad(g) · x. Sets of the form

Ox = G · x , x nilpotent

are called nilpotent orbits

There’s a number of ways nilpotent orbits enter modern representation theory.

First of all, there’s a subprogram of the Unitary Dual Problem called the orbit philosophy. In this program,
the problem of parameterizing all unitary representations of a given Lie group G, is regarded as the problem
of ”quantizing” coadjoint orbits. You see, the coadjoints orbits are always symplectic manifolds and as such
are interpretable as the phase space of a classical mechanical system. A quantization of such a coadjoint
orbit O, would then be a construction that attaches to O an irreducible unitary representation. The goal
of the orbit philosophy is to parameterize the unitary dual via such constructions. Unfortunately, for
each semisimple group there remains a finite list of coadjoint orbits for which no uniform construction of a
unitary representation from the orbit is known. These problematic orbits are always nilpotent orbits.

Secondly, nilpotent orbits arise as an important invariant of irreducible representations. This invariant,
the associated variety of a representation is actually interpretable as a dequantization of a representation
and as such it retains a lot of intuitive information about the original representation (like its relative size,
K-type structure, etc). The nilpotent orbits also provide a basis (double entrendre intended) for more
sophisticated invariants like the associated cycle of a representation.

Below I’ll be denoting by N the set of nilpotent orbits.

1.3. The Springer Correspondence. T.A. Springer’s 1978 paper A construction of Weyl group represen-
tations established a remarkably tight connection between Weyl group representations and nilpotent orbits.
His construction goes as follows. Let g be a complex semisimple Lie algebra, and let B be the flag variety
of g, that is to say, the variety of all Borel subalgebras of g. B is a homogeneous space for Gad = exp (πad).
Let x be a nilpotent element of g and let Bx be the subvariety of all Borel subgroups containing x. Gxad
acts on Bx, and in fact it is not so hard to show that the induced action of (Gxad)

o
on H∗ (Bx,C) is trivial.

Thus, A (Ox) = Gxad/ (Gxad)
o

acts on H∗ (Bx,C). Springer showed:

• There is also a natural action ofW onH∗ (Bx,C) and this action commutes with that of A = A (Ox).
• Regard X ≡ Htop (Bx,C) as a W ×A module. As a representation of a finite group it has a unique

decomposition (up to ordering and other trivialities)

(1) Ux =
⊕
µ∈Â

πx,µ ⊗ Vx,µ
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• In (1), πµ is either 0 or an irreducible representation of W and Vµ is an µ-isotypical representation
of A.

• Each irreducible representation π ∈ Ŵ occurs exactly once in such a decomposition; i.e., it occurs
exactly once as a πx,µ for a particular (conjugacy class of) x and a particular µ ∈ A (Ox). This fact
allows us to parameterize Weyl group representations by their Springer data

π ∈ Ŵ ↪→ (Ox, µ)

This is called the Springer parameterization of Ŵ . Note, however, for a given orbit Ox not

every µ ∈ Â (Ox) need occur. Put another way, given a nilpotent element x and a representation

µ ∈ Â (Ox), the µ-isotypical element of Ux is either empty or carries an irreducible representation
πx,µ of W unique for µ and Ox.

• The trivial isotypical component (where A acts by the identity) is always non-zero in Ux. The cor-
responding irreducible Weyl group representation πx,1 is called the Springer representation attacted
to the nilpotent orbit of x.

1.3.1. Significance of the Springer correspondence. Given the relative simplicity of Weyl group representa-
tion to nilpotent orbits, it is quite bizarre to see such an elaborate construction leading to a parameterization
Weyl group representations via nilpotent orbit data. And moreover, it’s so sophisticated, it’s hard to see
how this paramterization can be put to practical use. But, in fact, what makes the Springer correspondence
so important is that, to a large extent, it preserves the inter-relationships amongst nilpotent orbits and
Weyl group representations. For example, the partial ordering of nilpotent orbits by inclusion is reflected
by a natural partial ordering of Weyl group representations - and Spaltenstein duality amongst orbits is
consistent with a corresponding “duality” for Weyl group representations.

In short, while technically obtuse, the Springer correspondence organizes as it coordinatizes Ŵ and the set
of nilpotent orbits in a very useful way. The goal of this talk is to display the Springer relationship between

Ŵ and N in terms of similar combinatorial parameterizations for Ŵ and N .

2. Combinatorial Parameterizations of N and Ŵ

2.1. Combinatorial Bala-Carter.

2.1.1. Inclusion and Induction of nilpotent orbits. Let g be a semisimple Lie algebra and let ` be a Levi
subalgebra of g. There are two fundamental ways of constructing a nilpotent orbit of a semisimple Lie
algebra g from a nilpotent orbit Ol of l. The first and simplest method is orbit inclusion, where one
simply constructs its G-saturation as

incgl (Ol) = {X ∈ g | X = Ad (g) (x) for some g ∈ Gad and x ∈ Ol}

The second method is called orbit induction. Here one picks an extension p = l + n of l to a parabolic
subalgebra of g, and then constructs the G-saturation of Ol + n Inside this G-saturation there will be a
unique dense orbit (there will be several orbits in general, but a unique orbit of maximal dimension). We
set

indgl (Ol) = unique dense orbit in G · (Ol + n)

This orbit turns out to be independent of the choice of n (the extending nilradical).

An important special case of the latter construction is that of Richardson orbits. Here one begins with
the trivial orbit 0l of a Levi subalgebra and then induces that up to a nilpotent orbit of g

Richardson (l) = indgl (0l)

A thing to note about Richardson orbits (which actually extends to induced orbits in genearal), the smaller
the Levi l, the larger the nilradical n and so the larger the resulting Richardson orbit. Indeed, if we take
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l = 0 (the zero Levi), then

Richardson (0) = dg0 (00) = unique dense orbit in G · nb = the principal (maximal) nilpotent orbit

while
Richardson (g) = 0g the trivial (minimal) nilpotent orbit

2.1.2. The Bala-Carter Theorem.

Definition 2.1. A nilpotent element x (or its associated nilpotent orbit Ox) of g is said to be distinguished
if it does not reside in any proper Levi subalgebra of g. (If this is true for x, it will also be true for any
G-conjugate of x).

Theorem 2.2 (Bala-Carter). There is a 1 : 1 correspondence between nilpotent orbits of g and G-conjugacy
classes of pairs (l,Ol) where l is a Levi subalgebra of g and Ol is a distinguished orbit in l.

How this works is relatively easy to describe, the proof of course lies in the details. Start with a represen-
tative nilpotent x ∈ O, if it is not distinguished, it lies in some proper Levi l ( g, it x is distinguished in
l then it lives inside some proper subalgebra l′ of l. Eventually, we find a minimal Levi lmin for which x is
distinguished. It turns out that all such minimal Levis are G-conjugate and

O = G · x = incglmin
(Lmin · x) .

shows how to construct O from a distinguished orbit inside a Levi.

2.1.3. Combinatorial parameters. The problem now is to figure out a way of counting conjugacy classes
of Levi subalgebras and distinguished orbits inside Levi subalgebras. The former is easy. Every Levi
subalgebra is G-conjugate to a standard Levi subalgebra attached to a subset Γ of the simple roots for g and
a Cartan-Weyl basis for g:

lΓ = t⊕
⊕

α∈∆(Γ)

gα

where ∆ (Γ) is the root subsystem generated by Γ. If Γ,Γ′ ⊂ Π are two sets of simple roots, then

lΓ is G-conjugate to lΓ′ ⇐⇒ Γ is W -conjugate to Γ′

Thus,
{Levi subalgebras} /G ≈ 2Π/W

(the power set of Π modulo W ).

To parameterize distinguished orbits of lΓ, one first shows that a distinguished orbit is necessarily a Richard-
son orbit. Moreover, the inducing Levi lγ ⊂ lΓhas to satisfy a certain combinatorial condition: viz.,

#∆γ + #Γ = #
{
α ∈ ∆+

Γ | α = α1 + α2 with αi ∈ ∆γ , α2 ∈ Γ\γ
}

(2)

= number of positive roots in ∆Γ representable as a sum of

a root in ∆γ and a simple root of Γ not in γ

Accordingly, we call such a subset γ ⊂ Γ a distinguished subset of Γ. It turns out

indlΓlγ (0) = indlΓlγ′ (0) ⇐⇒ γ′ = w · γ for some w ∈WΓ

Remark 2.3. There’s an easy way to determine if two subsets of simple roots are W -conjugate. Form the
generalized Coxeter elements in W

cγ =
∏
α∈γ

sα

Then γ is W -conjugate to γ′ if and only if cγ and cγ′ are conjugate in W (and so, e.g. share the same
standard reduced expression).

Putting this all together:
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Theorem 2.4. The nilpotent orbits of g are in a 1 : 1 correspondence with (equivalence classes of) ordered
pairs (γ,Γ) of subsets of the simple roots of g where

• γ ⊂ Γ ⊂ Π
• #∆γ + #Γ = #

{
α ∈ ∆+

Γ | α = α1 + α2 with αi ∈ ∆γ , α2 ∈ Γ\γ
}

(Here γ is up to a WΓ equivalent subset, and Γ is up to a W� equivalent subset. Using the
properties of generalized Coxeter elements (cf. remark above), it is easy to fix unique standard
representatives for γ and Γ).

Explicitly, the correpspondence is

(γ,Γ) 7−→ incglΓ

(
indlΓlγ

(
0lγ

))
2.2. Truncated induction of Weyl Group representations. Given a finite group G and a representa-
tion πH of a normal subgroup H, one has a standard construction

ιndGH (πH)

of a representation of G. This construction, however, rarely takes irreducible representations of H to
irreducible representations. In the Weyl group situation, however, there is a modification of this procedure
that does take irreducibles to irreducibles. To set it up, we need a couple preliminaries.

Let h be a Cartan subalgebra of g. The Weyl group acts naturally by reflections on h∗ and hence induces a
representation of W on S (h) the symmetric algebra of h. Thinking of this as an action on polynomials, it
preserves degrees. Moreover, for each irreducible representation π of W , there is a unique minimal integer
n for which π appears as an W -isotypical component of Sn (h). This integer n is called the fake degree of
π (as it can be regarded as a simplification of a more complicated generic degee of π).

A W -representation π is called univalent if the multiplicity of π in Sdet(π) (h) is 1. For type An all irreducible
representations of W are univalent. For more general G, there’s typically a small handful of non-univalent
representations. One representation that is always univalent (and which has fake degree equal to number
of positive roots) is the sign representation of W which is the 1-dimensional representation of W given by

sgn (w) =

{
+1 if w has a reduced expression consisting of an even number of simple factors
−1 if w has a reduced expression consisting of an odd number of simple factors

Theorem 2.5 (Macdonald, Lusztig, Spaltenstein). Let Π be a simple system and let Γ be a subset of Π.
Suppose π is a univalent representation of WΓ of fake degree n and set

X = IndWWΓ
(π)

Then inside X there is a unique irreducible summand of X of minimal fake degree (which is also n).

The representation determined by the theorem above is called the representation of W obtained from π by
truncated induction (“truncated” because we end up ignoring the summands of X then involve representa-
tions of higher fake degree). We shall denote this representation by

jWWΓ
(π)

An important property of truncated induction is that it preserves the property of univalence (and so trun-
cated induction can be applied repeitively). On the other, when π is not univalent, one no longer has a
unique summand of minimal fake degree in X = indWWΓ

(π).

Of particular interest is the case when π is the sign representation. The irreducible representation

jWWΓ
(sgnWΓ

)

is called the Macdonald representation correponding to Γ. Such representations are analogous to Richardson
orbits, in that they really only depend on a (W -conjugacy class of a) Levi subsystem Γ ⊂ Π. In fact, the
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following diagram holds:

(3)

jWWΓ
(εΓ)

↗
Γ ⊂ Π l Springer

↘
indglΓ (0l)

where the Springer correspondence is the assignment to the nilpotent orbit G · x = jWWΓ
(sgnWΓ

) the

unique irreducible W -representation occuring carried by the A (Ox)-trivial summand of Htop (Bx,C). Other

words, the Springer map above is the correspondence N ←→ ŴSpringer that sends an orbit O to the W -
representation with Springer parameters (O,1). The diagram above is exemplifies the theme announced
in my introduction: both Macdonald representations and Richardson orbits are constructible for a simple
combinatorial datum Γ (a choice of subset of the simple roots), and the Springer correspondence verifies
that these are the “right way” to parameterize Macdonald representations and Richardson orbits.

(Intermission)

3. Special Representations and Special Orbits

We now seek to extend the combinatorial correspondence of diagram (3) to a wider classes of W -reps and
orbits. The first wider classes will be the special representations and the special orbits. The most expedient
way to define these classes is as follws

Definition 3.1. Let d1, . . . , dr be the degrees of the basic polynomial invariants of W (exponents of Π plus
1) and let φ be the character of an irreducible representation of W . The generic degree polynomial of φ
is

Pφ (t) =
1

|W |

r∏
i=1

(
1− tdi

) ∑
w∈W

φ (w)

det (1− tw)

The generic degree of φ is the degree of the leading term of Pφ (t).

Remark 3.2. In general, the generic degree of π ∈ Ŵ is ≤ its (fake) degree.

Definition 3.3. An irreducible representation of W is called special if the degree of its generic degree
polynomial is the same as its (fake) degree.

Definition 3.4. A nilpotent orbit is called special if the Springer correspondence O → π(O,1) maps O to a
special representation of W .

Remark 3.5. Macdonald representations are always special and Richardson orbits are always special.

Remark 3.6. Although our definition of special orbits has been pinned to that of special representations of
W , there is an alternative way of defining them that is independent of the Springer correspondence. Let
π be an irreducible (g,K) module of regular integral infinesimal character and let Oπ be the unique dense
orbit in the associated variety of the annihilator of π in U (g). Then Oπ is a special orbit and all special
orbits arise this way.

4. Dualities

If g is of type An−1 then both its orbits and W -reps can be parameterized in terms of partitions of n. In
this case as well, every W -representation and every nilpotent orbit is special. Moreover, there is a natural

involution on both N and Ŵ where an orbit (respectively, W -rep) parameterized by a partition p is sent
to the orbit (respectively, W -rep) parameterized by the partition transpose pt of p. (This transpose can be



7

carried out by rotating the Young diagram corresponding to p by 90◦.) This orbit duality for An−1 was
generalized by Spaltenstein as follows:

Theorem 4.1 (Spaltenstein). Let g be a simple Lie algebra. Then there is a unique map d : Ng → Ng such
that

• d2 (O) ≤ O (partial order by inclusion of closures)
• d

(
incgl (Oprin)

)
= indgl (0l)

• d (O) is always a special orbit.

Remark 4.2. While there were known algorithms for carrying out the action of d on the classical groups,
the existence and uniqueness of d on the exceptional groups had to be done by hand. Barbasch and Vogan
then provided a souped up version of the duality idea usually general representation-theoretical maps:

Theorem 4.3 (Barbasch-Vogan, 1985). Let g be a semisimple Lie algebra and let g∨ be its dual Lie algebra
(short roots ←→ long roots). Consider the map ηg : Ng → Ng∨ defined by

O 3 x→ {x, h, y} → 1

2
h = µO ∈ (h∨)

∗ → JO = max {J ∈ Prim (U (g∨)) with inf. char µO}

→ AssocV ar (U (g∨) /JO) unique dense orbit
−−−−−−−−−−−−−→

ηg (O) ∈ Ng∨

Then

• If O2 ⊂ O1 then ηg (O1) ⊂ ηg (O2) (order reversing)
• ηg ◦ ηg∨

◦ ηg = ηg
• Image

(
ηg
)

= {special nilpotent orbits}

In addition, Barbasch and Vogan proved the following theorem which exhibits our two methods of con-
structing nilpotent orbits from nilpotent orbits of Levis as being dual with respect to ηg :

Theorem 4.4. If Ol∨ is a nilpotent orbit in a Levi subalgebra of l∨ of g∨, then

ηg∨

(
incg

∨

l∨ (Ol∨)
)

= indgl (ηl∨ (Ol∨))

5. Variations on a Formula of Barbasch and Vogan

Recall that nilpotent orbits can be parameterized by (W -conjugacy classes of) certain distinguished subsets
γ of subsets Γ of simple roots. For a given g, below I’ll denote the parameter set by Bg

Bg = {(γ,Γ) | γ ⊂ Γ ⊆ Π ; γ distinguished for Γ} /W
(cf. (2)).

5.1. An intrinsic characterization of special orbits. Recall our definition of special orbits was tied
to that of special representations of W via the Springer correspondence. Let Sg, ⊂ Ng denote the set of
special nilpotent orbits and let Φ be the map from Bg∨ to Sg constructed as follows:

Φ (γ∨,Γ∨) = ηg∨

(
incg

∨

e∨Γ

(
ind

l∨Γ
t∨γ

(
0l∨γ

)))
= indglΓ

(
ηlΓ

(
ind

l∨Γ
t∨γ

(
0l∨γ

)))
Now the dual of a Richardson orbit corresponding to a Levi l∨γ ⊂ l∨Γ is always equal to inclusion of the
principal orbit of lγ in lΓ. Thus,

Sg = image (Φ) =
{
indglΓ

(
inclΓlγ

(
Olγ ,prin

))
| (γ∨,Γ∨) ∈ Bg∨

}
Note this characterization of Sg, as orbits induced from principal orbits of distinguished Levis within Levis,
uses the dual parameter set Bg∨ .
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5.2. Duality for Weyl group representations. Let’s look at the analog of the Barbasch-Vogan formula
(3) via the following transcriptions

Oprin ←→ IW

0g ←→ sgn (W )

indgl () ←→ TrIndWWg

ηg ←→ εW (Lusztig’s involution w/ twist by sign rep)

Then

Φ : Bg∨ → Sg : (γ∨,Γ∨) 7−→ ηg∨

(
incg

∨

e∨Γ

(
ind

l∨Γ
t∨γ

(
0l∨γ

)))
translates to

Ψ : Bg∨ → Ŵspec : (γ∨,Γ∨) 7−→ jWg
WΓ

(
εWΓ∨

(
j
WΓ∨
Wγ∨

(sgn (Wγ∨))
))

Giving us a direct construction of special representations (Note: Wg = Wg∨ , but nevertheless, the use of
dual parameters is essential, because e.g. Wl need not be conjugate to Wl∨)

5.3. Construction of Springer (orbit) representations.

Definition 5.1. Let Πe be the simple roots of g together with the lowest root of g. Then any proper subset
Γ of Πe will provide a simple subsystem of g, as well as a corresponding semisimple subalgebra lΓ of g. Πe

is called the extended simple roots of g.

Definition 5.2. Let

Be,g = Bg = {(γ,Γ) | γ ⊂ Γ ⊆ Πe ; γ distinguished for Γ} /W
We’re refer to Be,g as the extended Bala-Carter parameters for g.

Theorem 5.3. The image of the map

Ψe : Be,g∨ → Ŵ : (γ∨,Γ∨) 7−→ jWg
WΓ

(
εWΓ∨

(
j
WΓ∨
Wγ∨

(sgn (Wγ∨))
))

the set of Springer representatations of W .

Remark 5.4. Here the use of dual parameters is critical for another reason: a representation of W may be
Springer for g but not for g∨ (if only because #Ng 6= #Ng∨).

5.4. The telescoping of the map Ψ.

{Richardson orbits} ⊆ {Special Orbits} ⊆ {Nilpotent Orbits}

{Macdonald Reps} ⊆ {Special Reps} ⊆ {Orbit Reps}
↑ Ψ ↑ Ψ ↑ Ψe

2Π/W (γ = {}) ⊆ Bg∨ ⊆ Be,g

6. Cells

In view of the telescoping of the map Ψ, it is natural to ask if there a natural extension of the map Ψ so that
it produces a class of W -representations that contains the orbit representations. Of course, in such a picture,
one would have to also widen the notion of orbits to something like local systems on nilpotents orbits (to

accommodate Weyl group representations whose Springer parameters have a non-trivial ÂO component).
Alas, I haven’t been able to do this.

What appears to be a more useful generalization in applications is to relax our focus on irreducible repre-
sentations of W and instead look at a certain family of reducible representations; the cell representations
of W .
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Cell representations arise several different ways. First of all, there is a direct construction of the represen-
tations via induction from ”parabolic subgroups” of W (I note here that the native terminology for Weyl
groups is a bit askew - a parabolic subgroup of a Coxeter group (S,W ) is a subgroup generated by a subset
of S - so more like a Levi subgroup in representation theory termininology). Secondly, cell representation
arise in the classification theory of primitive ideals in the enveloping algebra of U (g). And thirdly, cell
representations arise special quotients of the W -graphs of Kahzdan-Lusztig theory and in Kazdahn-Lusztig-
Vogan theory as the coherent continuation representation of W acting on families of irreducible admissible
representations with the same associated variety.

6.1. Lusztig’s construction of cell representations. Here is a relatively simple inductive procedure for
producing all the cell representations of W . We first need is a modification of the operation of truncated
induction. Recall

jWWΓ
(πΓ) = unique irreducible representation in indWWΓ

(πΓ) with fake degree = deg (πΓ)

Set

j̃WWΓ
(πγ) = direct sum of irreducible representations in indWWΓ

(πΓ) with generic degree = generic degree of πΓ

Then the cell representations of W can be systematically constructed via an inductive procedure that goes
as follows:

• The trivial representation 1 of W is a cell.
• If Γ ⊂ Π, and φ is a cell representation of WJ then j̃WWΓ

(φ) and j̃WWΓ
(φ)⊗ sgnW are cells of W .


